Theoretical treatment of double photoionization of helium using a B-spline
implementation of exterior complex scaling

C. William McCurdy,'?3>* Daniel A. Horner," 3>t Thomas N. Rescigno,"' ¥ and Fernando Martin*: §

"Lawrence Berkeley National Laboratory, Computing Sciences, Berkeley, California 94720
2Department of Applied Science, University of California, Davis, California 95616
*Department of Chemistry, University of California, Berkeley, California 94720
4 Departamento de Quimica C-9, Universidad Autdnoma de Madrid, 28049 Madrid, Spain.

Calculations of absolute triple differential and single differential cross sections for helium double
photoionization are performed using an implementation of exterior complex scaling in B-splines.
Results for cross sections, well-converged in partial waves, are presented and compared with both

experiment and earlier theoretical calculations.

These calculations establish the practicality and

effectiveness of the complex B-spline approach to calculations of double ionization of atomic and

molecular systems.
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I. INTRODUCTION

The problem of double photoionization of helium is of
fundamental interest because it provides the model for
much of the basic physics for double photoionization of
atoms and molecules in general. For that reason it has
been the subject of extensive study by experimental [1 7]
and theoretical methods.

For theoretical calculations the challenge is to cor-
rectly treat the boundary conditions for the breakup of
a system of three charged particles. That problem has
been recognized as both a formal and practical difficulty
since the 1960s [8-10] and has been treated by a num-
ber of methods over the last decade with varying de-
grees of formal rigor and numerical accuracy. For exam-
ple, an ansatz wave function with an explicit three-body
asymptotic form was used in the three Coulomb wave
(3C) approach [11-13], while Shakeshaft and coworkers
made use of an assumed final state of screened Coulomb
waves [14, 15] in a similar ansatz approach. The first
numerical solutions of the Schrédinger equation for this
problem were perfomed using the convergent close cou-
pling [16 19] approach in which two-body boundary con-
ditions are used in close-coupling calculations and three-
body breakup amplitudes are constructed from two-body
discrete channel amplitudes. More recently Selles et al.
[20] developed a method in which semiclassical outgoing
waves were combined with the hyperspherical R-matrix
method to impose outgoing three-body boundary condi-
tions in calculations of considerable accuracy. Another
successful approach is the time-dependent close coupling
method which applies the correct boundary conditions
implicitly by time propagation of the initial state [21, 22]
in a method that produces accurate results for this and
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other Coulomb breakup problems. Finally, in a devel-
opment related in both spirit and formalism to the one
discussed here, the need to explicitly impose three-body
asymptotic boundary conditions was circumvented using
complex Sturmian basis functions in a mathematically
elegant method developed by Pont and Shakeshaft [23].

A recent and particularly successful approach to the
problem of imposing the correct three-body breakup
boundary conditions is the method of exterior complex
scaling (ECS) which has now been applied to a range of
problems, and has provided a formally and practically
complete solution for the three-body Coulomb breakup
problem. The ECS approach has been implemented us-
ing finite elements [24, 25], finite difference [26], and with
a combination of finite elements and the discrete vari-
able representation (DVR) [27, 28]. It has produced es-
sentially exact results for electron-impact ionization of
hydrogen [29, 30], and has been implemented with pseu-
dospectral methods [31, 32] to treat multiphoton detach-
ment in the context of Floquet theory for atoms in intense
fields. ECS has also been applied directly to wave packet
propagation in the time-dependent Schrodinger equation
with external fields [33].

In this paper we explore this problem with a recently
developed implementation in B-splines [34]. The B-spline
method has been applied to atomic [35, 36] and molecular
[37, 38] photoionization problems and there now exists a
well developed technology for such calculations [39-41].
An important property of B-splines is that they are able
to span a large volume to any degree of accuracy without
encountering the numerical problems that prevent the
use of exponentially decreasing basis functions. This is
crucial for the description of continuum states, especially
when the asymptotic region is needed. In addition, B-
spline basis sets are effectively complete, which is an ideal
property in those problems where the entire spectrum is
needed [39]. The double ionization continuum lies in this
cathegory.

Our goal is to compare the ECS-B-spline approach to
the problem of double photoionization with experiment



and the results of other theoretical methods, to establish
its accuracy and effectiveness. The results in the present
study lay the groundwork for the application of the ECS
B-spline method to double photoionization of molecules.

II. THE IMPLEMENTATION OF EXTERIOR
COMPLEX SCALING USING B-SPLINES

The details of this implementation have been discussed
at length elsewhere [34], but we will provide a brief sum-
mary of the essential points here.

The ECS transformation that underlies this approach

scales the coordinates only outside a fixed radius,
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where Ry defines the radius within which the wave func-
tion will be the usual function of real-valued coordinates,
and 7 is a scaling angle. In an exact or converged calcula-
tion the solutions of the Schrodinger equation for r < Ry
do not depend on 1. However as has been discussed else-
where [28, 29, 42] setting n # 0 effectively imposes out-
going scattering boundary conditions on the two-electron
final state of our problem. B-splines that scale according
to this ECS transformation are defined by setting a series
of knots t; < t;41 on the complex contour and by using
the usual recursion relation [43] for B-splines of order k,

B )+ B (2)

BE(r) = ;
i ( ) ti+k‘, o ti+1 =41

tivk—1 —ti

together with the definition of B-splines of order k = 1

1 for t; <r <ty
Bl(r) = t= i+ 3
(r) {0 otherwise (3)

A basis of B-splines is defined by a grid of breakpoints,
&;, coinciding with the knots, ¢; (which may be multiple),
that appear in the recursion relation above. The break-
points can be placed arbitrarily on this contour but one
of them and its corresponding knot must be placed at
t; = Ro. In this way, BF has a discontinuous first deriva-
tive with respect to r at r = Ry, because the derivative of
the contour itself is discontinuous at that point. The dis-
continuity in the first derivative of all the B-splines that
span the point Ry is essential to reproduce that of the
exact wave function. Figure 1 shows a typical B-spline
basis of order £ = 8 and the discontinuities of the first
derivatives at r = Ry. Only B-splines that straddle the
point Ry have both real and imaginary components. All
other B-splines are real, whether they are on the complex
part of the contour or not.

With the above definitions, all one- electron matrix
elements are reduced to sums of complex integrals be-
tween breakpoints. In each interval, the integrals are
performed using a Gauss- Legendre quadrature. Only
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FIG. 1: 8th order B-splines on the complex exterior scaling
contour with Ro = 50 and 5 = 40°. Heavy black lines are
the real parts of the only complex splines. Grey lines are the
imaginary parts.

those integrals involving B-splines that are both differ-
ent from zero need to be evaluated. The two-electron
integrals are performed by carrying out a multipole ex-
pansion of interelectron repulsion, 1/|r; — ry|. The an-
gular portions of the two-electron matrix elements are
evaluated analytically, while the radial portions are best
handled by mapping the problem to an equivalent one in-
volving the solution of Poisson’s equation in an exterior
complex-scaled B-spline basis. We refer the interested
reader to ref. [34] for details.

III. THE AMPLITUDE AND CROSS SECTIONS
FOR SINGLE PHOTON DOUBLE IONIZATION
OF AN ATOM

The double photoionization amplitude is associated
with the purely outgoing wave function ¥}, that is the
solution of the driven Schrodinger equation, which we
can write for example in the “velocity form”,

(Bo +w — H)|[¥!) =e- (V1 + V3) [¥o)
d d (4)
= <E + d_z2> Wo)

where € is the polarization unit vector, and |¥) is the
initial (bound) state of the atom.

The asymptotic form of the solution of this equation
can be written in analogy with Rudge’s formal analysis
of the electron-impact ionization problem [10],
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where F' is proportional to the ionization amplitude, the
hyperradius, hyperangle and magnitude of the total mo-



mentum are

p=yri+r3

a=tan ' (ry/r) (6)
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and where the angle dependent coefficient of the loga-
rithmic phase is

C(fﬁ’lﬁg,a)/p:Q/T]+2/T‘2—1/T]2 (7)

With the ECS method, the most effective approach for
problems with two particles in the continuum is to write
the amplitude as a surface integral performed on a surface
just within the volume enclosed by the exterior scaling
radius, Ry [28, 44]. To that end we want to formulate
the amplitude for this process as an integral of the form

fki ko) =
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where F is the total energy, T is the two-electron kinetic
energy operator, V7 is the sum of all one-electron poten-
tials,

V1 :*Zl/T17Z2/T‘2 (9)
The Q(Z:)(k,r) are Coulomb functions normalized to a
delta function in momentum and with effective charges
Z; that will be defined later.

To relate the integral in Eq.(8) to the amplitude F', we
can proceed to do the integral by stationary phase exactly
as in Rudge’s analysis [10]. His Eq. 2.52 is the result we
seek, except for an overall factor of (27)3, which arises
because our Coulomb functions are momentum normal-
ized, and with a volume dependent overall phase which
arises because we have not enforced the so-called ”Pe-
terkop condition” [8] on their effective charges.

So with Rudge’s Eq. 2.52 we have

F(ky,ko, B) = —(2m)"/?x(k1, ko, p) f(k1, ko) (10)

with x(ky, ks, p), being the usual (and irrelevant) volume
dependent overall phase:

X(kl . k2, p) 26721'Z2 1n(k2/K)/k,2672iZ1 ln(k‘,l/K)/k‘,l

ei[C(l%l,kz,ﬁ)/Kle/h*Zz/kz]ln(2Kﬂ) (11)
The (¢ function is, as defined by Rudge,
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and the hyperangle 3, defined by 8 = tan'(ky/k1),
parametrizes the asymptotic momentum distribution of
the photoejected electrons. The original idea of the

“Peterkop condition” was to make this overall volume-
dependent phase disappear by choosing Z; and Z, to
satisfy

Zy Z, 1 1 1
kT S 13
R L P P (13)

which cancels the last exponent in Eq. (11). However the
cross section for double photoionization does not depend
in any way on this overall phase [45].

The triple differential cross section (TDCS) for dou-

ble photoionization is directly related to the amplitude
f(kl, kg) by
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This result is the same as the one employed by Shakeshaft
and coworkers [14, 15]. It is also consistent with the flux
formulation of the problem of Selles et al. [20] who define

the TDCS in terms of the outgoing flux associated with
the solution of Eq.(4):

il 2z sin(2a) 5
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where k1 = Kcos(a) and ks = Ksin(a) are the mo-

menta of the outgoing electrons and the radial flux, F),,
is defined by
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Given the analysis of McCurdy, Horner and Rescigno
[28], and the more complete analysis for electron impact
ionization of hydrogen by Baertschy et al. [30], we know
that we can evaluate the amplitude f(kq,ks) by calcu-
lating the integral of eq. (8) on a finite volume, given the
solution for ¥}, from an ECS B-spline calculation, if we
chose the effective charges to both be equal to the nuclear
charge.

7y =y =2 (18)

With that choice the orthogonality properties of the
Coulomb functions eliminate the contributions from the
discrete single ionization channels, as has been discussed
previously [28, 44], allowing for the use of values of the
exterior scaling radius, Rg that are of the order of a few
10’s of Bohr radii for this problem.

There is an overall volume-dependent, phase associated
with this integral that has no physical consequences for
calculations of the cross sections for this process. More-
over it has been shown that if for some reason it were
interesting to do so, it can be calculated by an extension
of the analysis of Rescigno, Baertschy and McCurdy [45].

An important practical consequence of Eq. (8) is that
using Green’s theorem it can be transformed into a sur-
face integral that is easier to compute and that depends



only on the asymptotic form of the scattered wave func-
tion. That fact was exploited by Pont and Shakeshaft
[23] and has been used extensively in calculations on
electron-impact ionization using exterior complex scaling
[27, 28, 30, 44, 45]. We will make use of this important
property of Eq. (8) in our derivation below of the work-
ing equations for the present calculations.

The next question we must answer in order to do a
practical calculation is how to define the partial wave
amplitudes corresponding to Eq. (8) and how to express
the triple differential cross sections and single differential
cross sections in terms of them. It is to that question
that we now turn our attention.

IV. REPRESENTATION OF V¥,

In a calculation using the ECS B-spline approach we
make use of configuration interaction (CI) representation
of 7, of the form

\I!:_c = Z Cnll,ml2¢n,l1,m,l2 (19)

n,m,l1<l2

where Cy, ,mi, are the CI coefficients. The B-spline cal-
culation has configurations defined by (total angular mo-
mentum L with upper/lower sign corresponding to sin-
glet/triplet spin coupling)

1 1
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where r~1¢, ;(r) denotes a normalized radial “orbital”
associated with the indices nl.

If the initial state is 'S, and is therefore spherically
symmetric, and the polizarization is linear, we can choose
any axis to coincide with the polarization vector e. If we
choose that to be the z axis, then the final state must
have the symmetry !P,, where M = 0 corresponds to
the z axis, because the dipole operator, for example in
the length representation, € - r, transforms with Y7 o(z).
So for the case of double ionization of the helium ground
state we have L =1 and M =0 in Eq. (20).

Thus we have written the scattered wave function in
the form

‘I’j{, = Z (,(/)ldlz’rlz (’I“] s Tg)yll‘l’j\;[(ﬂ] ) Qz):l:
11 <l2 (21)

G ) UL (1, ))

As we will see below, it is useful to visualize the partial
wave radial wave functions, ¥y, 4, (71, 72), in this equation.

The coupled spherical harmonics are defined by
Y (2, Q) =
Z (imaloma |l s LM ) Yiy my (1) Y1y, m, (922)

my,ma

(22)

using the notation of Edmonds [46] for the vector cou-
pling coefficients. In terms of 3-j symbols these functions
are

Yo (0, Q) =
S (kML +1)t2

mi,ma
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(23)

and we will use their properties in deriving the expres-
sions for the TDCS below.

V. PARTIAL WAVE ANALYSIS OF THE
DOUBLE IONIZATION AMPLITUDE

A. The ionization amplitude and the triple
differential cross section

As mentioned above, it is most effective in applications
of the ECS approach to computing breakup amplitudes
to formulate the amplitudes as surface integrals taken
over a volume just inside the exterior scaling radius Ry.
To get those working equations we now need to explicitly
evaluate the integral expression for the double ionization
amplitude

fki ko) =

24
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where ®(~)(k,r) denotes a Coulomb function with mo-
mentum normalization and nuclear charge Z = 2. That
function is related to the one with outgoing boundary
conditions by ®(-)(k,r) = (&) (~k,r))", and its par-
tial wave expansion is given by [47]

- 9 1/2 ile—im © o
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where
m=argl(l+1—iZ/k) (26)

and the asymptotic form of the radial Coulomb function
that defines its normalization is

7 l
¢§£) (r) — sin(kr + = In2kr — % + ) (27)



Now we can substitute Eq.(25) and Eq.(19) [using Eq.
(20)] into Eq.(24) to get the working equation for the
ionization amplitude, f(k;,ks), in terms of direct and
exchange partial-wave amplitudes:

o) = 3

1 <l2
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(28)

The double ionization amplitude has two contribu-
tions, one from the direct part and one from the exchange
part of each of the CI configurations in Eq.(20). Note
that the I; indices are reversed in the coupled spher-
ical harmonic in the exchange contribution and that
the k’s and I’s appear paired differently in the direct
and exchange contributions. The algebra that leads up
to Eq.(28) involves first doing the angular integrations,
which pick out the contributions to the coupled spherical
harmonics in Eq.(20). The vector coupling coefficients
are used to recombine the resulting terms to give cou-
pled spherical harmonics that are function of the angles
of ejection corresponding to the two momenta, k; and ks.
The other phase factors come from the two expansions of
the Coulomb functions using Eq.(25).

Defining the one-electron radial Hamiltonians as

1d* I(l+1) 2
o _ = 2
s 2 dr? * 2r? T4 (29)

k3

the partial wave amplitudes in Eq.(28) are then given by
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The “two-potential” formulas of Eq.(30) and Eq.(31)
also have an equivalent surface integral representation of
the partial-wave amplitudes, which appears upon the ap-
plication of Green’s theorem. By using the hyperspheri-
cal coordinates defined in Eq. (6), we can write each of
them as an integral over a “surface” with p = pg, which
defines the volume in r; and ry for the integration

<¢§:1)h ¢5662)l2 |E —h - h‘2|(10n,l1 ¢m712> =
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This representation makes it obvious that Eq.(24) and
Eq.(28) depend only on the asymptotic form of ¥ .. In a
practical calculation we choose pg to be just inside (a few
tenths of a Bohr radius) Ry. The working equations with
which we will compute the double ionization amplitudes
are thus Eqs.(32-33) together with Eq.(28). The TDCS
is then given by Eq.(14)

B. The singly differential cross section

The coupled spherical harmonics in Eq.(28) are or-
thornormal. Since the singly differential cross section is
the integral of the TDCS in Eq. (14) over Q; and
it simplifies because of the orthonormality of the cou-
pled spherical harmonics. The result is that the singly
differential cross section (SDCS) is simply

2 ir 2 exc 2
B, Eklkz; (7t + 77500 7) 39)

and the phase factors in Eq.(28) do not play a role in its

computation.
The total cross section for double ionization is then
E
do
ion = —dFE 35
Oion /0 dE; 1 ( )

although the integral cross section is frequently defined
as the integral over half this interval, which requires a
definition of the singly differential cross section as

do do

— =2— 36
dE, dE, (36)
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FIG. 2: TDCS for both length gauge (dashed curves) and ve-
locity gauge (dark solid curves) for computational grids hav-
ing Ry = 26 ao, 30 a0, 35 ap. Light solid curve shows calcula-
tion including another double continuum, {;,1> = 4, 5.

so that

; —/m—&dE (37)
Oion — o dE1 1

Eq. (37) is, in fact, the convention used in this paper.

VI. CALCULATED CROSS SECTIONS FOR
DOUBLE PHOTOIONIZATION OF HELIUM

The first requirement of accurate calculations of double
photoionization cross sections is an accurate description
of the ground state of the atom, because double ioniza-
tion cross sections are largely determined by correlation
effects in the initial state. For the ground state in these
calculation we used configurations containing orbital an-
gular momenta up to [ = 4. The initial state is described
by a CI wave function made up of Slater type orbitals
with exponents of 2.4, 3.6, 4.8, 6.0 and 6.8 for | =0, ..., 4
respectively, to give a total of 115 configurations. These
Slater orbitals are expanded in the same B-spline basis
described below. The ground state energy given by this
calculation is —2.903198 hartree compared to the exact
value [48] of —2.903724 hartree and is thus close to the
I = 4 limit for the energy of the initial state.

For the final double continuum wave function, ¥7,, we
have performed calculations with a variety of B-spline
basis sets and included various numbers of partial waves
for the double continuum. In Fig. 2 we show, as an
example, the results of calculations in both the length
and velocity gauges for the TDCS for a photon energy
of 40eV above the double ionization threshold. In that
figure we include partial waves up to I = 4 and plot the
results of calculations with values of the turning point Ry
for the ECS contour equal to 26 ag, 30 ag, and 35 ag. We
also show a calculation including up to I =5 in the final
state for Ry = 30agp. All calculations in Fig. 2 make

use of 53 B-splines for each partial wave. The level of
stability exhibited in Fig. 2 strongly suggests that these
calculations are converged with respect to the computa-
tional parameters of the B-spline basis and partial wave
expansion.

These calculations require much smaller values of Ry,
and therefore smaller basis sets, than do calculations of
electron impact ionization of hydrogen, for which a value
of Ry near 100ag is necessary. We speculate that the
reason for this behavior is that the final state of the dou-
ble photoionization process in helium is more strongly
dominated by the nuclear attraction potential. The fact
that this interaction is included in the Coulomb functions
of the “two-potential” integral expressions, Eqs.(32-33),
with which we evaluate the amplitudes, allows them to
be computed as a surface integral at values of the hyper-
radius corresponding to the point where that interaction
begins to dominate the behavior of the outgoing wave.

All the results that we compare with experiment below
were computed using a computational grid with 47 B-
spline knot points over the first 42.0 ag, and 6 additional
knot points on the remaining complex contour out to
Rimax = 80ag. The turning point, Ry, of the ECS contour
was 35.0ag. The angular momentum expansion included
[ values up to lpnax = 4, giving us contributions from
the kskp, kpkd, kdkf, and kfkg double continua. Using
these 53 B-splines and 4 double continua, we have a total
of 11,236 configurations in the CI representation of ¥.
All the results we present below were computed in the
velocity gauge, although as Fig. 2 indicates, the results
in the length gauge are essentially the same.

The components of U7, defined in Eq.(21) reveal much
of the dynamics of the photoionization process at a
glance. The first three of them, the kskp, kpkd and kdk f
contributions, are plotted in Fig. 3 for a photon energy
20 eV above the double ionization threshold. These plots
show only the direct contribution and are thus not sym-
metric under interchange of r1 and ry. In the first of
them we see the single ionization contribution as an out-
going wave parallel to the ro axis and confined to small
r1. The kskp contribution also displays the outgoing
waves for double ionization as wave fronts at constant
hyperradius. For the higher angular components the rel-
ative importance of single ionization decreases since it
proceeds through higher ionization thresholds; thus the
outgoing double ionization wave fronts are more appar-
ent. As l; and I increase the wave function components
rapidly decrease in magnitude as can be seen in the kpkd
contribution.

The SDCS for 20eV is compared with experiment [1]
and with the calculations of Colgan et al. [22] in Fig.
4. The agreement between these two calculations is very
good. The partial wave contributions are also shown and
demonstrate how the SDCS converges with inclusion of
higher [ values. The details of the TDCS, however, are
naturally more sensitive to the higher angular momenta.

Braiining et al. [2] have measured absolute TDCS’s
for a photon energy of 20eV above threshold. These
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FIG. 3: Real part of of direct contribution to the wave func-
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tributions from the kskp, kpkd, and kdkf partial waves.
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FIG. 4: SDCS for photon energy 20eV above threshold. Cir-
cles: experiment by Wehlitz et al. [1]. Dashed curve: TD-CC
calculations by Colgan et al. [22]. Thick solid curve: Present
result. Lighter solid curves: contributions to SDCS from each
noted double continuum.
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FIG. 5: TDCS for photon energy 20eV above threshold, at
various energy sharings for §; = 0°. Circles: experiment by
Braiining et al. [2]. Dashed curve: TD-CC calculations by
Colgan et al. [22]. Dotted curve: HRM-SOW calculations by
Selles et al. [20]. Thick solid curve: Present result.

measurements provide a rigorous test of the theoretical
description of the double photoionization process and,
thus, we begin by presenting results at this photon en-
ergy. Fig. 5 shows a comparison between our results and
the experimental ones for §; = 0°, i.e. for the case in
which the first electron exits parallel to the polarization
axis. The agreement is very good. The figure also
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FIG. 6: TDCS for photon energy 20 eV above threshold, for various #; values in equal energy sharing. Circles: experiment by
Braiining et al. [2]. Dashed curve: TD-CC et al. [22]. Dotted curve: HRM-SOW [20]

includes results from previous theoretical calculations,
namely results from the Time-Dependent Close-Coupling
method of Colgan (TD-CC) et al. [22] and the Hyper-
spherical R-Matrix method with Semiclassical Outgoing
Waves (HRM-SOW) method of Selles et al. [20]. Al-
though the general agreement between different theoret-
ical results is good, there are significant discrepancies
when the two electrons escape “back-to-back” in direc-
tions colinear with the polarization vector. This geom-
etry, which we might call the “Wannier geometry” be-
cause it is the geometry that dominates at threshold for
electron-impact ionization, is the one that requires the
most partial waves and densest basis to converge in the
present calculations. Our results are closer to those of
the TD-CC method.

For other geometries the agreement between various
ab initio calculations is much better, and for them es-
sentially identical results are obtained at 20eV by ECS,
TD-CC and HRM-SOW methods. As an illustration,
Fig. 6 shows a comparison for equal energy sharing and
different values of #;. A similar agreement between the-
oretical results from these three methods is found at all
the other geometries reported here for 20eV.

In Fig. 7 we compare the ECS results for unequal en-
ergy sharings with the absolute experimental determina-
tions of Braiining et al. for §; = 60° and §; = 90°. Fig.
8 shows a similar comparison for all the energy sharings

measured by Braiining et al. at 20eV and #; = 30°. Very
good agreement is obtained in all cases.

These experiments and essentially all others on this
system were performed in “coplanar geometry”, that is,
with the polarization vector and both momenta k; and
ko lying in the same plane. To provide an overall visu-
alization of the double ionization process, we have also
evaluated TDCS’s for out-of-plane geometries. In Fig. 9
we show two three-dimensional views of the TDCS for a
photon energy of 20eV above threshold that correspond
to two panels of Fig. 8. In the first one we see the
effects on the three-dimensional TDCS of the selection
rule for equal energy sharing that prevents the electrons
from exiting in opposite directions [12]. The selection
rule is more apparent in three dimensions than in Fig. 8.
In the second case, for strongly unequal energy sharing
(Ey = 3eV and E, = 17eV), we see that the selection
rule does not apply and a lobe appears in the TDCS
corresponding to emission of the second electron in the
opposite direction to the first, lower energy electron.

We now turn to the case of 40 eV for which the experi-
ments of Bologonesi et al. [49] and those of Cvejanovié et
al. [50] provide only relative values of the cross sections.
In each case the reported TDCS for different energy shar-
ings and angles are internormalized within the experi-
ment. So we have two separate sets of internormalized
results with which to compare. Theoretical calculations
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predict absolute values for cross sections. Therefore, we
adhere here to the principle that no scaling of any theo-
retical TDCS predictions should be made when compar-
ing them with experiment. To do otherwise would be
misleading, especially when there are several theoretical
predictions to be compared with the same experimental
cross section.

In Fig. 10 we compare with the experimental results
of Bolognesi et al. [49] and the results of CCC calcula-
tions included in the same reference for an energy shar-
ing B; = 5eV and Ey = 35eV, and 6, varying from 0°
to 60°. We have normalized the relative experimental
cross sections to our computed TDCS at 4, = 60° and
2 = 30° for this energy sharing, thereby fixing the nor-
malization of the experiment in Fig. 10 as well as in Fig.
11 where we compare with complementary sets of exper-
imental data for E; = 35eV and Ey = 5eV. The results
of CCC calculations from reference [49] are also shown
in those figures with no scaling. Although both theoret-
ical results generally reproduce the shapes of these six
TDCS plots, there remain significant differences between
the theories and between the theories and the experi-
ment. The CCC results are significantly smaller than
the ECS results for §; = 60° and 30° in both figures.
Nonetheless both theories suggest, as was originally sug-
gested in reference [49], that the internormalization of the
experiment for £, = 5eV and #; = 30° and 0° may be

suspect. The ECS results, however seem to be in better
overall agreement with the results of this experiment.

Turning to the experiments of Cvejanovi¢ et al. [50] for
a photon energy of 40 eV above threshold and E; = 5eV,
we again normalize the relative cross sections to our com-
puted TDCS value at one point, namely §; = 130° and
6y = 250°, thereby determining the normalization of all
six TDCS plots in Figs. 12 and 13. In these figures we
also plot the CCC results of reference [51]. Again, while
the overall shapes of the cross sections are very similar
and there is general quantitative agreement, some sig-
nificant differences can be seen between the ECS and
CCC computed results. Overall the CCC results seem to
be in better agreement with this experiment, although
both theoretical calculations differ from the experiment
systematically. Those differences are particularly pro-
nounced for the “Wannier geometry” where the electrons
go out in opposite directions colinear with the polariza-
tion axis.

VII. CONCLUSION

We have evaluated triply differential cross sections
(TDCS) for double photoionization of helium using a re-
cent implementation of exterior complex scaling (ECS)
with B-splines basis functions. This implementation



takes advantage of existing B-spline codes for atomic two-
electron systems as well as of all the ECS technology de-
veloped to evaluate TDCS’s in electron impact ionization
problems. Details of the most important modifications
in the current B-spline codes have been published else-
where [34], while the link with the double photoionization
problem has been presented in detail in this paper. The
power of the ECS-B-spline approach resides in its abil-
ity to provide converged results to any desired accuracy
without losing the possibility to work with atomic or-
bitals as in traditional basis sets expansions. This is a
very important feature that allows one to reduce the size
of the calculations without loosing accuracy and, there-
fore, it will be very convenient for future applications to
more complicated systems such as diatomic molecules.
Application of this methodology to the evaluation of
TDCS in double photoionization of helium has shown
that converged results are obtained with a moderate
number of basis functions and partial waves. Our results
for a photon energy of 20eV above threshold are in very
good agreement with absolute measurements of Brauning
et al. for all the coplanar geometries and energy sharings
investigated here. There is also general good agreement
with previous theoretical results obtained with the TD-
CC and HRM-SOW methods, although some discrepan-
cies exist for unequal energy sharing when the two elec-
trons escape in oposite directions. At this photon energy,
we have also presented a few results for three-dimensional
(non-coplanar) geometries for which previous experimen-
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tal or theoretical results do not exist.

Similar conclusions have been obtained for a photon
energy of 40eV above threshold, although, in this case,
the differences between the present results and those from
a previous CCC calculation are significantly larger and
these differences are not confined to geometries where the
electrons escape in oposite directions.
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FIG. 9: Three dimensional TDCS plots for 20eV. Lighter
vertical arrrow pointing downward is the photon polarization
direction to which all angles refer. Darker arrow represents
the direction of one ejected electron, #; = 30°. The surface
shows the angular ejection distribution of the second elec-
tron, for the case of equal energy sharing, E1 = E» = 10eV
(top panel), and unequal energy sharing, F1 = 3eV (bottom
panel).
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FIG. 10: TDCS for photon energy 40eV above threshold, in
the unequal energy sharing of E; = 5eV and E> = 35eV at
various values of 6; of the 5eV electron. Circles and dashed
curve: experiment and CCC calculation of Ref. [49]. Thick
solid curve: Present result.
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FIG. 11: TDCS for photon energy 40eV above threshold, in
the unequal energy sharing of E; = 35eV and E, = 5eV at
various 61 of the 35eV electron. Circles and dashed curve:
experiment and CCC calculation of Ref. [49]. Thick solid
curve: Present result.
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FIG. 12: TDCS for photon energy 40eV above threshold, in
the unequal energy sharing of E; = 5eV and E> = 35eV at
various f; of the 5eV electron. Circles: experimet of Cve-
janovi¢ et al. [50] Dashed curve: CCC calculation [51]. Thick
solid curve: Present result.
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FIG. 13: TDCS for photon energy 40eV above threshold, in
the unequal energy sharing of E; = 5eV and E> = 35eV at
various 01 of the 5eV electron. Circles: experimet of Cve-
janovié et al. [50] Dashed curve: CCC calculation [51]. Thick
solid curve: Present result.
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